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Abstract 

Background  Estimating the factors affecting the probability of a wildfire reaching the wildland urban interface (WUI) 
can help managers make decisions to prevent WUI property loss. This study compiles data on fire progression, wind, 
landscape characteristics, and fireline built to estimate the probability of an active fire reaching nearby WUI blocks. 
We started by constructing funnel-shaped analysis zones between recorded fire perimeters and WUI blocks. We used 
zonal analysis to characterize landscape and fireline arrangement and then used a random forest modeling approach 
to quantify the probability of fire reaching the WUI blocks.

Results  We found the probability of WUI exposure from an active fire had close relationships with several explanatory 
variables including wind gust velocity, suppression difficulty, control potential, fireline arrangement, road densities, 
WUI block sizes, and the distance between WUI and the fire’s front. We found that the most important predictor vari-
ables influencing WUI exposure probability were gust, fireline arrangement, and distance from a fire ignition location 
to a WUI. We found that random forest models can achieve reasonable accuracy in estimating WUI fire exposure 
probabilities.

Conclusions  Focal analyses and random forest models can be used to estimate WUI fire exposure probabilities in 
support of large fire suppression decisions at division to incident scales.
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Resumen 

Antecedentes  La estimación de los factores que afectan la probabilidad de que un incendio llegue a la interfase 
urbano rural (WUI en inglés) puede ayudar a los gestores de recursos a tomar decisiones para prevenir pérdidas en 
propiedades de la WUI. Este estudio compila datos sobre la progresión del fuego, vientos, características del paisaje, 
y la construcción de líneas de fuego para estimar la probabilidad de que un fuego activo llegue a las cercanías de 
manzanas con construcciones de esa WUI. Comenzamos por analizar zonas en forma de embudos entre registros de 
perímetros de fuego y manzanas de WUIs. Usamos análisis zonales para caracterizar el arreglo entre paisajes y líneas 
de fuego, y luego la aproximación de un modelo basado en el análisis forestal al azar para cuantificar la probabilidad 
de que un fuego alcance las manzanas del WUI.

Resultados  Encontramos que la probabilidad de exposición de la WUI a un fuego active tuvo una relación muy 
estrecha con varias variables exploratorias incluyendo la velocidad de ráfagas de viento, la dificultad en la supresión, 
el control potencial, el arreglo espacial de la línea de fuego, la densidad de la red vial, el tamaño de las manzanas de la 
WUI, y la distancia entre la WUI y el frente de fuego. Encontramos que los predictores de las variables más importantes 
que influencian la probabilidad de exposición de la WUI fueron las ráfagas de viento, el arreglo espacial de la línea de 
fuego, y la distancia entre la WUI y la ubicación del punto de ignición. Encontramos que los modelos de análisis forestal 
al azar pueden alcanzar una exactitud razonable para estimar las probabilidades de exposición de las WUIs al fuego.

Conclusiones  Los análisis focales y los modelos forestales al azar pueden ser usados para estimar las probabilidades 
de la exposición de las WUIs al fuego en apoyo a grandes decisiones de supresión en escalas desde división hasta de 
incidentes.

Background
Community protection remains a top priority for fire 
managers in regions with growing societal impacts 
from wildfire. In the western US, increasing wildfire 
activity and expansion of the wildland urban inter-
face (WUI) are driving an upward trend in community 
exposure to wildfire and home loss (e.g., Platt et  al. 
2011, USDOI & USDA, 2014, Abatzoglou & Williams, 
2016, Iglesias et  al., 2022, Caggiano et  al., 2020). For 
incident management teams managing a large wildfire 
burning toward vulnerable assets, essential informa-
tion for risk-informed decision-making includes the 
likelihood of the fire reaching the assets and the abil-
ity for suppression to lessen that likelihood (Stratton, 
2020, Calkin et  al., 2021). Various fire spread models 
are used to estimate potential fire growth and asset 
exposure (e.g., Finney et al., 2011a), but limited knowl-
edge of suppression effectiveness at division (geo-
graphical areas of firefighting operations) to incident 
scales has been developed (Plucinski, 2019), which 
raises the need for models that integrate both fire 
spread and suppression (Dunn et al., 2017) in estimat-
ing WUI exposure risk.

Spatial metrics like building density, vegetation cover, 
and proximity to large areas of wildland fuels are used 
to identify buildings or neighborhoods that are vulner-
able to wildfire (Gibbons et al., 2012, Bar-Massada et al., 
2013, Radeloff et al., 2018). A growing body of research 
on the factors influencing home loss uses GIS focal 
analyses (within a neighborhood instead of at a single 

pixel) to evaluate which landscape factors and at what 
scales are most predictive of home loss given exposure 
to wildfire (Price & Bradstock, 2013, Knapp et al., 2021, 
Syphard et  al., 2021). Such models complement WUI 
classification methods with quantitative estimates of 
building loss risk, but they do not address the likelihood 
of WUI exposure to wildfire. Price et  al., (2015) used 
binomial regression models to predict the probability 
of a fire spreading to the WUI by analyzing fire spread 
along artificial lines that connect random fire ignition 
points to potential WUI blocks and suggested that fire 
weather had the strongest influence, followed by the 
percentage of the artificial lines that were forested, the 
distance between a WUI and the approaching fire, and 
time since last fire.

Fire spread simulation models that account for 
weather, fuels, and topography as driving factors are 
also widely used by fire managers to inform suppres-
sion location, effort, and timing of evacuations. Two 
relevant examples in the USA are FARSITE (Finney, 
2004, also called “near term fire behavior”) and FSPro 
(Finney et  al., 2011b), which are both integrated with 
the Wildland Fire Decision Support System (Calkin 
et  al., 2011, Noonan-Wright et  al., 2011). Haas et  al., 
(2014) simulated thousands of random ignition loca-
tions spreading under extreme fire weather conditions 
on the Colorado Front range to identify potential igni-
tion locations that have the highest potential to impact 
populated WUI areas. Ramirez et  al., (2019) used sto-
chastic fire simulation results to estimate the time and 
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probability of a wildfire reaching WUI or other assets 
that trigger suppression decisions. While valuable, fire 
spread predictions depend on analyst expertise when 
setting parameter to calibrate observed fire behavior, 
and often provide limited ability to simulate the effects 
of fire suppression.

A separate but related body of research seeks to 
understand why fires cease to spread using empiri-
cal analysis of fire perimeters and characteristics of 
the landscape. One approach trains machine learn-
ing models of containment probability with random 
sample points from fire perimeters as successes and 
from fire interiors as failures (O’Connor et  al., 2017). 
Another common approach is case-control logistic 
regression with successes sampled along the perimeter 
and paired failures extracted at points along a transect 
toward the fire interior (Narayanaraj and Wimberly, 
2011, Macauley et  al., 2022). Spatial predictions from 
these models may prove useful for rating the level of 
suppression opportunity between a wildfire and a WUI 
community.

In this study, we developed a novel focal analysis 
method to quantify how wind, landscape conditions, and 
fireline construction between a fire perimeter and nearby 
WUI blocks impacted WUI fire exposure probability. We 

designed spread funnels with a consistent shape to cap-
ture the potential fire spread toward WUI blocks. We 
used historical fire records to reflect the real-world fire 
and suppression situations in the western US. We trained 
random forest (RF) models to evaluate the importance 
of factors influencing WUI exposure probability. Our 
approach can be used to identify WUI communities with 
higher fire exposure probabilities during a fire incident, 
and help managers estimate the effects of suppression 
decisions.

Data and methods
Landscape conditions, wind, and suppression efforts may 
jointly influence WUI fire exposure probability during a 
wildfire incident. We leverage a set of historical fire data 
to study those influences.

Wildfire/WUI samples
We collected spatial data including fire perimeters, fire-
lines, and nearby parcels of land classified as WUI for 
eleven large wildland fires (Fig.  1) in the western US 
from 2017 to 2018. These fires were selected, in part, 
based on the availability of data needed for our analy-
sis and represent a wide range of environmental condi-
tions. Fire perimeters from the GeoMAC historical fire 

Fig. 1  The locations and final footprints of the eleven fires selected in the analysis
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database (Geospatial Multiagency Coordination Center, 
n.d) were used to capture fire progression throughout 
the duration of each fire incident. Fireline data were 
acquired from the National Interagency Fire Center 
(NIFC, https://​data-​nifc.​opend​ata.​arcgis.​com/). We only 
included on-the-ground lines labeled as “completed” 
that were built with burnout operations, dozers, hand 
crews, plows, or that occurred along roads. The fireline 
data did not include other detailed line attributes such as 
line width or construction effort.

We downloaded a national WUI map derived from 
census blocks data (Radeloff et  al., 2005). We dissolved 
the boundaries of adjacent WUI polygons to create 
continuous “WUI blocks.” We selected blocks within 

1600 m of the final fire perimeters for use in the analy-
sis. Table  1 lists the number of blocks that were iden-
tified for each fire. A dependent variable “ isImpact ” 
(Table  2) is used to track whether the final fire perim-
eter intersected the selected WUI block ( isImpact = 1 ) 
or not ( isImpact = 0 ). Increasing the buffer distances 
of final fire perimeters would increase the number of 
WUI blocks not-impacted in our sample but would not 
change the number of impacted WUI blocks.

The progression of each fire is represented by multi-
ple fire perimeters at daily or multi-day time steps (an 
example given in Fig.  2). In this study, we randomly 
included no more than twelve recorded fire perim-
eters from each fire. For fires with fewer than twelve 

Table 1  The list of eleven fires and the number of WUI blocks studied for each fire. The number of fire perimeters selected from each 
fire to pair with each WUI block varies depending on their locations

Year Fire name Fire size (ha) Number of WUI blocks Total area of 
WUI included in 
analysis (ha)

2017 Brianhead 29,013 17 1059

2017 Gold Hill 2641 1 1

2017 Lolo Peak 45,939 24 7490

2017 Meyers 51,987 4 76

2018 Carr 92,936 37 15,574

2018 Crescent Mountain 21,332 3 833

2018 Ferguson 39,186 22 51,670

2018 Hirz 18,800 1 75

2018 Klondike 84,011 36 38,085

2018 Silver Creek 8145 1 960

2018 West Valley 4769 1 4

Table 2  List of variables selected for use within the random forest models. N/A indicates that there is no need to summarize the 
measurement across all funnels in each cluster as the measurements will be identical across funnels in the same cluster

Explanatory variables Description of explanatory variables Method to summarize 
for multiple funnels in 
a cluster

isImpact Dependent variable denoting whether a fire would finally spread into a WUI block (isImpact=1) 
or not (isImpact=0)

N/A

Gust The average hourly wind gust speed within a 2-day window before the earliest recorded day 
when a fire entered a WUI block; in case fire did not impact a WUI, a 2-day window before the 
final fire containment is used; measured by meter per second.

N/A

leakRatio_max Max leak ratios calculated for all funnels in the same cluster. Max

PCLMean Average funnel-mean-PCL in the same cluster. Average

rdDensityClosest Road densities in the funnel of the closest fire perimeter to a WUI. It is calculated as the total 
number of raster cells within the 120-m buffers of all roads divided by the total number of raster 
cells in the funnel.

Closest

SDIClosest Average SDI in the funnel formed from the closest fire perimeter to each WUI in each cluster. Closest

WUIDist Distance between the earliest recorded fire perimeter and a WUI block; measured by meters. N/A

WUISize The size of the WUI block of interest; measured by acres. N/A

https://data-nifc.opendata.arcgis.com/
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recorded perimeters, all perimeters were included. 
Within included fire perimeters, we only chose those 
that were at least 1200 m from a WUI block. This pro-
cess creates a “cluster” of fire perimeters (explained in 
Fig. 3 later) for each WUI block of interest.

Suppression difficulty and control potential
To provide metrics reflecting the relative effective-
ness and difficulty to construct fireline between a 
fire perimeter and a WUI block, we used two raster 
map products from the decision support analytics 
used by the USDA Forest Service Risk Management 
Assistance (RMA) Program (Calkin et  al., 2021) that 
were customized for use on the studied incidents. 
Suppression difficulty index (SDI) is a relative meas-
ure of how hard it is to suppress a fire with ground 
resources. It is calculated by dividing an “energy 
behavior index” by the sum of indices that influence 
fireline construction efficiency, such as accessibil-
ity, penetrability, and mobility (see Rodríguez y Silva 

et al., 2020, 2014, O’Connor et al., 2016). The energy 
behavior index is calculated using flame length and 
heat per unit area (detailed equations presented in 
Rodríguez y Silva et al., 2020). Potential control loca-
tion (PCL) suitability is the estimated probability of 
a fire ceasing growth based on the statistical associa-
tion of binary control outcomes from historical fire 
perimeters with landscape characteristics relevant 
to fire suppression such as elevation, slope, aspect, 
fuel model, vegetation type, roads, accessibility, and 
suppression difficulty (O’Connor et  al., 2017). PCL 
does not account for the presence or absence of fire-
lines. Both SDI and PCL were originally calculated 
and represented as 30-m raster maps and are widely 
used to support containment strategy development 
during fire incidents (Calkin et  al., 2021) as well as 
pre-fire planning (Dunn et al., 2020, Thompson et al., 
2021). To improve the processing speed when using 
those maps, we resampled both layers into 120-m 
resolution.

Fig. 2  Daily fire footprints for the Brianhead fire and its surrounding WUI blocks. Only those WUI blocks intersecting the 1600-m buffer of the final 
fire footprint are included in the analysis



Page 6 of 18Wei et al. Fire Ecology           (2023) 19:30 

Focal analysis
Alternative focal area selections
A necessary step toward analyzing the WUI fire impact 
probability is to select the landscape (focal area) 
between a fire perimeter and WUI block for analysis. 
Different focal area designs may each have its strengths 
and weaknesses. We illustrate four options in Fig. 3. A 
simple approach would be connecting WUIs and fire 
perimeters with straight lines and analyzing the land-
scape conditions along each line segment (Fig.  3a). 
This design was implemented by Price et  al., (2015) by 
connecting WUI and fire with random lines. However, 
studying spatial patterns only along those lines is nar-
rowly focused. An improvement would be buffering 
those lines to create rectangular-shaped analysis zones 
to include broader potential fire spread areas (Fig. 3b). 
Another potential design is to connect the same-side 
boundaries between each fire perimeter and a WUI 
block (Fig.  3c). This design, however, would create 
focal zones with different shapes and pose challenges 
in comparing certain spatial metrics between zones. 
This design also tends to create relatively “narrow” 
focal areas from smaller fire footprints (Fig. 3c). In this 
study, we choose to build consistent “funnel” shaped 
(Fig.  3d) focal areas instead. The size and orientation 

of each funnel may vary, but all funnels would have an 
identical shape. The length of the “wider” edge of a fun-
nel increases as the distance between a fire and WUI 
increases, which helps capture a broader area of pos-
sible fire spread areas toward a WUI when a fire is far 
away from it. Funnels pointing toward the same WUI 
from multiple perimeters of the same fire form a fun-
nel cluster. We treat each funnel cluster as one sample. 
Synthesizing the landscape metrics from multiple fun-
nels in the same cluster could better capture the over-
all landscape and fire suppression conditions along the 
potential fire spread paths toward a WUI.

Analyze funnel‑shaped focal areas
As we discussed before, for each WUI/fire perimeter 
pair, we selected a funnel-shaped focal analysis area to 
study landscape conditions (PCL, SDI, roads, etc.) and 
fireline constructions within it. The two main steps for 
this approach are explained below and illustrated in 
Fig. 4.

•	 Step 1: Identify the shortest Euclidean distance 
between each pair of studied WUI/fire perimeter.

•	 Step 2: Create a fire impact funnel (or funnel) along 
the shortest distance identified from Step 1 (Fig.  4) 

Fig. 3  Illustration of four potential focal area selections: a creating straight lines to connect a WUI block and corresponding fire perimeters; b 
forming rectangular focal areas; c connecting boundaries between fire perimeters and WUI as focal zones; d creating funnel-shaped focal analysis 
areas (used in this study). In d, the three funnels form a “cluster.” Because the main axis of each funnel matches the unique shortest-distance-line 
between a WUI and a specific fire perimeter, the three funnels may overlap partially. The smallest funnel (delineated by dashed blue lines) in d is 
formed by the “closest” fire perimeter in the cluster
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using a raster-based algorithm (algorithm and exam-
ples provided in Appendix 1).

Each funnel is a quarter-circle-shaped focal area 
designed to delineate the landscape where a fire may 
likely spread across before impacting WUI. The funnel’s 
axis will align with the shortest straight line connect-
ing a fire perimeter to a WUI block. In each funnel, we 
analyzed how the firelines completed during suppres-
sion may “shield” a WUI from the threat of an upcom-
ing fire. For this purpose, we calculated a measurement 
named “funnel leak ratio” or “leak ratio” as described 
in Appendix 1. In cases where firelines totally shield 
a WUI block from a nearby fire, the leak ratio of that 
funnel is zero; without any fireline, the leak ratio will 
be one; for a partially shielded funnel by firelines, the 
leak ratio could take any value between zero and one 
(e.g., ~ 0.33 in Fig.  4). The leak ratio was calculated 
based on completed firelines within a funnel instead 
of only firelines held successfully as we are interested 
in analyzing the potential impact of total fireline con-
struction efforts (e.g., a breached fireline may still be 

able to slow fire spread). Besides the leak ratio, we also 
calculated other landscape metrics within each funnel, 
e.g., mean SDI, PCL, fireline density, and road den-
sity. These landscape measurements (except the leak 
ratio) were calculated in each funnel regardless of the 
fireline construction effort. Each funnel (e.g., in Fig. 4) 
provides a snapshot in time of the landscape between a 
WUI and an approaching fire perimeter. Multiple fun-
nels are constructed for multiple perimeters from the 
same fire to form a cluster for the same WUI to provide 
multiple snapshots of landscapes between a WUI and 
an approaching fire (Fig. 3d).

Gust impact
The impact of wind to fire and suppression is compli-
cated and highly variable (Keeley & Syphard, 2019). For 
each of the 11 fires studied, we collected wind records 
from the closest fifteen weather stations (Appendix 2, 
Table  3) within a 100-km radius of each fire from the 
Synoptic Data portal (https://​devel​opers.​synop​ticda​ta.​
com/​meson​et/​v2/). To represent wind occurring dur-
ing active fire spread periods, we used wind records 

Fig. 4  An illustration of the “funnel” focal analysis area. A funnel is created with its central axis aligned with the shortest distance line connecting a 
WUI and a fire perimeter; each funnel has a fixed 90-degree opening angle. The funnel “leak ratio” is calculated as the length of the funnel edge not 
“shielded” by any completed firelines divided by the total length of the funnel edge along the wider side

https://developers.synopticdata.com/mesonet/v2/
https://developers.synopticdata.com/mesonet/v2/
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from ten o’clock local time in the morning until nine 
o’clock at night. It would be ideal if we could have col-
lected more precise wind records matching the time 
when fire encountered fireline, but this type of data was 
not available. We chose to use the average hourly gust 
speed across the 2-day period prior to the day that a 
fire impacted a WUI block, or before the fire was con-
tained (for not-impacted WUI blocks), as a coarse-scale 
explanatory variable to study WUI fire exposure prob-
ability. Gusts also have strong positive correlations with 
sustained wind speed (Fovell & Gallagher, 2018). The 
experiments from aggregating gust speeds for alterna-
tive durations are presented in Appendix 3 and Figure 9.

Explanatory variables
After testing many candidate explanatory variables, we 
selected seven of them to build RF models (Table  2). 
Some of the variables have been discussed earlier in this 
paper. For example, we calculate the mean PCL, SDI, 
and road density in each impact funnel. The variables 
not yet mentioned include the distance between the 
earliest recorded perimeter of each fire and each studied 
WUI block (denoted “WUIDist”) and the size of each 
WUI block (denoted “WUISize”). We also selected the 
maximum leak ratio across all funnels in the same clus-
ter (denoted leakRatio_max in Table  2). When screen-
ing explanatory variables, we reference the correlation 
heatmaps between variables (Figure  10 in Appendix 4) 
by selecting variables generally with higher correlation 
with the predicted variable (e.g., isImpact) but lower 
correlations with the other explanatory variables.

Building and testing random forest models
Random forests use a combination of decision tree pre-
dictors with each tree built on a set of random samples 
(Breiman, 2001). We treat each funnel cluster as a sam-
ple used to train the RFs; each cluster may include one or 
multiple impact funnels associated with the same WUI 
block and fire.

We use the python 3.0 sklearn.RandomForestClassifier 
module to train and test RF models based on the seven 
selected explanatory variables. Hyperparameters were 
used to control the RF learning process. A cross-valida-
tion method from the sklearn’s RandomizedSearchCV 
function was implemented to test different combinations 
of hyperparameters. Based upon those test results, we 
chose to use 300 tree-classifier results to construct each 
RF; the minimum number of samples in each leaf is set 
to one, and the maximum depth of each tree is set to six. 
All explanatory variables were normalized prior to being 
used to create the RF models; thus, their values ranged 
between zero and one.

To better understand the RF models’ performance, we 
adopt a Monte Carlo random sampling process to build 
200 RF model replications; in each replication, we ran-
domly split all clusters into a training and a testing data 
set, with each training set comprised of 80% of the total 
clusters and the remaining 20% of clusters designated as 
the corresponding test set. This method builds one RF 
tree using the training set and tests that RF against the 
remaining test data set. Training and testing multiple 
RFs allow us to estimate both the mean and variation of 
the RF models when they were used to study the impor-
tance of each expandatory variable on each fire’s impact 
on WUI blocks.

Results
Below we provide test results describing the input data 
to the RF models and metrics reflecting the RF models’ 
performance.

Data description
We create histograms of the seven variables (Table 2) asso-
ciated with both the “impacted” and “not-impacted” WUI 
blocks (Fig.  5). Observations show that impacted WUI 
blocks are generally associated with higher maximum leak 
ratios; in contrast, a maximum leak ratio of zero for all fun-
nels within a cluster (the WUI block is shielded by firelines 
in all the funnels) is often associated with not-impacted 
WUI blocks. PCL is a measure of the probability that a fire 
will cease at any location irrespective of suppression effort. 
An average PCL > 0.4 in a funnel cluster is often associ-
ated with not-impacted WUI blocks. Both SDI and roads 
directly reflect fire suppression difficulty and opportunity, 
which are also important measurements in the “closest” 
funnel to the WUI block within each cluster. For the closest 
funnel, if its average SDI was less than 50 (about 30 percen-
tile) or its road density was higher than 0.4, we more likely 
find the corresponding WUI blocks not impacted by a fire. 
A 2-day average of hourly wind gust faster than 4.5 m/s 
before a fire impacted a WUI appears to create a greater 
threat to the studied WUI blocks.

RF classification results
We evaluated the performance of RF models through 
cross-validation using different testing data sets to pre-
dict whether each WUI block would be impacted versus 
not-impacted by a fire (Fig. 6a). The average RF classifi-
cation accuracy from cross-validation is about 86%. The 
“area under the ROC curve” (AUC) was calculated for 
each RF model; AUC measures the two-dimensional area 
underneath the receiver operating characteristic (ROC) 
curve from (0,0) to (1,1) and represents model perfor-
mances across all classification thresholds. The mean 
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AUC value of the RF models is 86%. To test each of the 
RF classifiers individually using different random test 
datasets, a two-by-two confusion matrix was constructed 
representing the dispositions of the RF classifications 
(Fawcett, 2006). The confusion matrix summary gener-
ated from 200 RFs (Fig. 6b) had an average true-negative 
rate (TNR) rate of ~0.88 and average true-positive rate 
(TPR) rate of ~0.83, suggesting the RF models slightly 
under-predict the positive (impacted) condition from the 
testing data sets used for cross-validation (Fig. 6b).

From the predictors’ relative importance graph (Fig. 6c), 
we found that three explanatory variables show relative 
importance levels above 0.10. Of those variables, gust is 
ranked as the most important variable, with an average 
relative importance of 0.34. The max leak ratio in each 
funnel cluster is the second most important explana-
tory variable, with an average relative importance level 
of 0.16. The distance between the earliest fire perimeter 
in the cluster and the WUI block has an average relative 
importance of 0.15. The importance of the remaining four 
variables is close to or slightly below 0.1. For example, the 
cluster average of PCL has a relative importance level of 
0.1, similar to the road density and SDI measurements in 
the closest funnel of each cluster. The size of WUI block 
shows a smaller average relative importance of 0.07.

We calculated and displayed the average partial depend-
ence (PD) measurements from the 200 tested RF mod-
els (Friedman, 2001; Molnar 2022) for each of the seven 
explanatory variables (Fig.  7). PDs reported by sklearn 
across a range of values of each explanatory variable provide 
the average prediction of WUI fire exposure probability if 
all data points are set to assume the value of the analyzed 
variable. Although PD values fluctuate for some explana-
tory variables due to randomness, noise, and smaller sam-
ple sizes within certain data ranges, the general trends of the 
PD curves could still reflect the impact of those explanatory 
variables on WUI fire exposure probabilities.

PD analyses show that gust values above the eightieth 
percentile are associated with dramatically increased WUI 
fire exposure probability. Increasing values of leakRatio_
max are generally associated with an increase in WUI fire 
exposure probability, especially when the leakRatio_max is 
above 0.6. The ability to plan and implement suppression 
actions if a fire can be discovered when it is still far away 
from a WUI, represented by larger values of WUIDist, 
is associated with lower WUI fire exposure probability. 
Increasing road density is also correlated with lower WUI 
fire exposure probability. As expected, higher SDI and lower 
PCL are associated with higher WUI exposure probability. 
Note that both SDI and PCL are composite measurements 

Fig. 5  Distribution of the explanatory variables in either the “impacted” or “not-impact” groups
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reflecting vegetation and fuel conditions, accessibility, and 
fire cessation probability (PCL), or suppression challenges 
(SDI). Increasing road density in the closest funnel also 
decreased the probability of a WUI being impacted by a 
fire. In addition, larger WUI blocks may be more prone to 
fire impact. The overall trends shown in the PD graphs are 
consistent with our initial expectations.

Appendix 5 shows another RF model retaining only the 
three most important explanatory variables. Although 
removing four of the seven explanatory variables did not 
meaningfully decrease the prediction accuracy, we found 
higher levels of fluctuation of the PD curves, which make 
it more challenging to understand how each individual 
explanatory variable would influence the WUI fire expo-
sure probability.

Discussion and conclusions
In this study, we constructed clusters of funnel-shaped 
focal analysis units between WUI polygons and active 
fires and analyzed factors that may influence WUI 

fire exposure probabilities. Centering our analyses on 
fixed-shape funnels allowed us to calculate and com-
pare landscape characteristics among fires and at-risk 
WUI blocks. We quantified the potential “shielding” 
effect from building firelines in each funnel using a 
calculated leak ratio. We assume fireline construc-
tion effort will help mitigate WUI fire exposure risk 
either by containing or slowing fire spread. We built 
and tested a set of RF models based on randomly split-
ting training and testing datasets. We selected seven 
explanatory variables and examined their impact using 
predictor importance and PD plots. Test results show 
that using RF models with those predictor variables 
achieved reasonable classification accuracy for WUI 
fire impact outcomes. The RF models could be used to 
compare fire exposure probabilities between different 
WUI blocks under different wind and suppression sce-
narios to help managers identify the most vulnerable 
WUI blocks during a fire event. Our analyses show 
that funnel-specific landscape conditions such as road 

Fig. 6  RF models performances through random trainings and testing data sets. a Classification accuracy. b The confusion matrix (TNR, 
true-negative rate; TPR, true-positive rate; FPR, false-positive rate; FNR, false-negative rate). c The relative importance of predictors
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density, SDI, PCL, fireline amount and arrangement, 
distance between the initial fire discovery location and 
WUI block, and WUI block size are likely to impact 
the WUI fire exposure probability during a fire event.

This study accounted for the impact of wind gusts 
in the RF models using the average hourly wind gust 
speeds within a 2-day window prior to a fire’s impact on 
a WUI block (for impacted WUI blocks), or prior to a 
fire being contained (for not-impacted WUI blocks). 
The RF model results indicated that higher gust speeds 
(positively correlated with higher sustained wind speeds) 
were the most important factor in increasing WUI fire 
exposure probability. Higher gust speeds may result in 
more severe fire behavior as well as associated firefighter 
safety concerns that can limit effective fireline construc-
tion and use. Due to spatial and temporal limitations in 
data coverage, it is often difficult to reconstruct wind 
impacts on fire spread and suppression along specific 
firelines, fuel breaks, or natural barriers (roads, ridge 
lines, etc.) Terrain may also greatly impact wind direc-
tions and speeds, which may have both positive and 
negative impacts on fire suppression. Future research 

may benefit from designing and testing additional wind 
measurements with better data.

Besides wind and firelines (reflected by the cal-
culated leak ratio), the distances between the initial 
fire location when it was first recorded and the WUI 
blocks at risk were critical in determining WUI fire 
exposure probability. This is likely for two reasons: (1) 
fire is inherently less likely to spread a longer distance 
than a shorter distance and (2) a longer distance likely 
allows additional time and opportunity for managers 
to plan and implement suppression actions. In addi-
tion to the distances between initially recorded fire 
perimeters and WUI blocks, both the road density and 
SDI in the “closest” funnel to a WUI block show mod-
erate impacts on WUI fire exposure probability. Roads 
likely play at least two functions—serving as pre-con-
structed fire breaks as well as facilitating access to the 
fire for personnel and equipment. The SDI metric rep-
resents the averaged suppression difficulty levels as a 
fire approaches a WUI block; thus, we can expect that 
lower SDI is associated with lower WUI fire exposure 
probability.

Fig. 7  Partial dependence (PD) plot for the seven explanatory variables, each normalized between zero and one and represented in the x-axis, 
versus the estimated probability of a fire impacting a WUI block, represented in the y-axis. Each point on the PD plot is the probability in favor of 
the “impacted” class across all observations. The nine ticks along the x-axis split the samples into ten groups with equal number of samples in each 
group (or deciles). Some ticks are clustered together and represent denser samples within the range
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The fire impact funnels provide an intuitive and con-
sistent spatial delineation that allowed us to calculate 
landscape spatial metrics along likely fire spread path-
ways before a fire reaches a WUI block. We believe it 
represents a logical and intuitive design that is easy 
to implement, but we also acknowledge it is not nec-
essarily a perfect spatial delineation of focal analysis 
areas. For example, setting up the opening angle of a 
funnel is somewhat arbitrary. We choose a 90-degree 
angle because it is easy to program on a raster map. 
We could either increase or decrease the funnel angle 
to account for broader or narrower areas across which 
a fire may spread toward a WUI block. There are also 
other shape options for the focal analysis zones, e.g., 
line, circle, ellipse, rectangle, or a combination of mul-
tiple shapes. Designing, testing, and comparing dif-
ferent focal zone designs, and potentially different 
methods to calculate landscape metrics, could improve 
model performance.

The impact of landscape conditions on WUI fire 
exposure is complex and thus will continue to provide 
interesting fodder for future research, particularly as 
the data to support such research improves. Beyond 
incorporating additional spatial metrics as explana-
tory variables to build RF models, another method that 
might be used to examine WUI fire exposure prob-
abilities would be to use images to directly train con-
volutional neural networks (CNN). Images could be 
clipped out into consistent shapes such as squares, or 
by fire impact funnels, etc. CNN models can be trained 
to recognize more complex spatial patterns of fire-
line amount, orientations, shapes and locations, SDI 
or PCL, and roads, and learn how those patterns may 
jointly influence WUI fire exposure probabilities. Com-
pared to the RF models tested here, CNN models can 
use images as direct inputs instead of relying on pre-
calculated landscape spatial measurements such as leak 
ratio or average PCL, etc. Building CNN models, how-
ever, may require substantial effort to create labeled 
images and innovative model designs to utilize the 
information carried by those images.

Collecting well-synchronized spatial and tempo-
ral fire data is time-consuming and challenging. This 
study built and tested RF models using the focal anal-
ysis concept based on moderate sample sizes. Test 
results identify reasonable relationships between the 
WUI fire exposure probability and seven explana-
tory variables. Collecting more fire samples and add-
ing more data layers, such as aerial retardant or water 
drops, fuel break locations, previous fires, or fire-
line types (dozer, handline, burnout, etc.), could also 
improve our ability to study factors influencing WUI 
fire exposure probabilities.

Appendix 1
Construct fire impact funnels and calculate funnel leak 
ratio
The axis of each fire impact funnel orientates along 
either the South, North, East, West, Northeast, North-
west, Southeast, or Southwest direction (denoted as S, 
N, E, W, NE, NW, SE, SW). For example, if a funnel axis 
has an azimuth direction of 185-degree, we will clas-
sify it as “North” facing or “N”. Starting from the WUI 
end, we will add raster cells one by one into the impact 
funnel following a predefined sequence (Fig.  8a). Dur-
ing the process of building a funnel, we iteratively call 
equations (Eq.1) and (Eq.2) to add raster cells (indexed 
as c) into the funnel by assigning either 0 or 1 value to 
a variable xc to track whether direct fire spread path 
without encountering any firelines can be found from 
cell c to the targeted WUI. If this path exists, we set 
xc = 1 ; otherwise, xc = 0 . Cells not part of the funnel 
will have xc = null . Since this algorithm is designed to 
use raster maps as inputs, all the input map layers such 
as firelines, WUI, roads, SDI, and PCL need to be con-
verted to raster maps first.

•	 Set xc = null for all cells  as the initial state.
•	 Variable xWUI is set to 1 for the raster cell(s) repre-

senting the  possible fire impact point(s) to the cor-
responding WUI.

•	 An impact funnel will be formed by keeping adding 
new cells c into the funnel. cʹ denotes cells directly 
adjacent to cell c from the WUI side.

•	 Parameter linecʹ denotes whether firelines exist in 
cell cʹ. Zero denotes no fireline in cell cʹ; 1 denotes 
fireline existing in cʹ.

For example, assuming we have a raster map with row 
index (denoted as row_ID) and column index (denoted as 
col_ID) for each cell; (row_ID=0, col_ID=0) represents the 
location of the top-left conner of the raster map; row_ID 
increases by moving downward and col_ID increases by 
moving rightward across the map. If we assume a fire was 
discovered from the north of a studied WUI (Fig. 8), for a 
cell at the location (row_ID, col_ID), at most three directly 
adjacent cells cʹ connected to it from the WUI side of cell 
c with their locations indexed as (row_ID + 1, col_ID - 1), 
(row_ID + 1, col_ID) and (row_ID + 1, col_ID + 1). The 
sequence of assigning values to cell c  shown in Fig.  8a 

(1)xWUI
= 1

(2)xc =

⎧
⎪⎨⎪⎩

1, if
∑
c�
xc� × (1 − linec� ) ≥ 1 ∀ c added to the funnel

0, otherwise
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guarantees that variable xc is assigned a value of either zero 
or one (Eq. 2) only after xcʹ for all its three directly adjacent 
cell cʹ from the WUI side of the funnel have already been 
calculated. xcʹ is assigned a value of zero under two scenar-
ios according to Eqs. 1 and 2: (1) xcʹ of all the three adjacent 
cells cʹ have been assigned a value of zero, or (2) fireline 
exists in all the three adjacent cell cʹ.

Using the example in Fig. 8, after a funnel is built, we can 
tally the value of xc for cells at the wider end of the funnel. 

Any cell c along the wider side of the funnel edge with 
xc = 1 is identified as a cell that can spread fire to the stud-
ied WUI following a combination of vertical and diagonal 
spread directions (Fig.  8). The number of cells along the 
edge with xc = 1 divided by the number of cells along the 
wider end of the funnel edge is called “leak ratio” (Table 2). 
If firelines can separate a WUI and a fire perimeter in a 
funnel, the leak ratio of the funnel would be zero; in other 
cases, the leak ratio would be between zero and one.

Fig. 8  In this demo, we assume fire would spread toward a WUI from the north end of the funnel and a WUI is located at the south end of the 
funnel. a The sequence of cells being added into the funnel. Panel a also shows a case that fire from the wider end of the funnel edge can spread to 
the WUI without encountering any fireline. b A case with firelines built in the funnel. The “leak ratio” after considering the effect of fireline is about 
4÷9 = ~0.44 in Panel b.
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Appendix 2

Table 3  The weather station codes used for each fire through the 
Synoptic Data portal.

Fire name Weather station IDs

Brianhead BHCU1; BRHU1; COOPPAGU1; CTMU1; CVYU1; 
PGLU1; PNGU1; UCC19; UCC20; UTR20; YKEU1;

Carr BDYC1; CLCC1; CQ098; CTBSN; HDLC1; LSHC1; 
MMOC1; OBRC1; RFSC1; SFKC1; SHDC1; SLFC1; 
TCAC1; TRWC1;

Crescent Mountain COOPMZAW1; COOPSTEW1; MAZ22; RAIW1; 
RDHW1; STRW1; USGSHY657; USGSHY666; 
WAP55; WAP67;

Ferguson C1522; CNFC1; CQ160; CQ168; D0826; EPWC1; 
GFTC1; JSDC1; MAGC1; MBBC1; MIAC1; WCFC1; 
WWNC1; YVVC1; YWAC1;

Gold Hill BANM8; BIFM8; COOPLIBM8; COOPTRSM8; KS59; 
LBBM8; MTYAK; S599; TROM8; TS259; TT166; TT481; 
YKAM8; ZONM8;

Hirz BNKC1; CTANT; CTVOL; GISC1; GRDC1; HRZC1; 
LSHC1; SLFC1; SMSC1; UP595; UP627; UP670;

Klondike AGFO3; E4806; E7191; K3S8; ODT23;

Lolo Peak COOPSTEM8; E0591; ITD28; LOLM8; LPSI1; 
MOMM8; MTM01; SMTM8; STVM8; TS934;

Meyers BRLM8; CLVM8; COOPSLAM8; DALM8; DEEM8; 
GPRM8; ITD87; MTGTL; PHGM8; PTNM8; SKAM8; 
SUAM8; TEPM8; TT282;

Silver Creek ARPC2; BUFC2; C9561; COLC2; COOPKMLC2; 
CSU61; GSPC2; KC07; LYNC2; PCPC2; RESC2; YCAC2;

West Valley CAVU1; CDCU1; COOPNHRU1; FG016; GAPU1; LGFU1; 
LPRU1; TS716; UTBLK; UTTP3; VEYU1; WRRU1;

Appendix 3

Fig. 9  Histogram showing the distributions of average hourly wind gust speed within the a 1-day, b 2-day, or c 3-day windows before a fire first 
impacted a WUI block (for impacted WUI) or before a fire was finally contained (for not-impacted WUI). Results suggest that using a 2-day window 
provides the cleanest classification results based on the given samples



Page 15 of 18Wei et al. Fire Ecology           (2023) 19:30 	

Appendix 4
Additional descriptive statistics of the explanatory variables

Fig. 10  Correlation heat map between candidate explanatory variables
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Appendix 5
Figure 11 shows the performance from another set of RF 
models using only the three most important explanatory 
variables (3-variable models). Comparing with the 7-var-
iable RF models, the 3-variable models provide just simi-
lar prediction accuracy (Figure 11a, b). As expected, the 

relative importances of the three explanatory variables 
are higher than the same variables from the 7-variable 
model given in the main text (Figure 11c). The PD graphs 
from the 3-variable model follow the same pattern as the 
same variables in the 7-variable models, but with higher 
levels of fluctuation (more jagged, or less smooth).

Fig. 11  RF model performance through random training and testing data sets for the 3-variable model. a Classification accuracy. b The confusion 
matrix. c The importance of explanatory variables. d The PD graphs for the three explanatory variables
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